• 什么是蓝牙测试?如何延长蓝牙耳机寿命?

    什么是蓝牙测试?如何延长蓝牙耳机寿命?

    对于蓝牙,想必大家都已经十分了解了。上篇文章中,小编对蓝牙的配对连接过程以及蓝牙的发展史有所阐述。为增进大家对蓝牙的了解,本文将基于三点介绍蓝牙:1.蓝牙测试概述,2.蓝牙耳机寿命,3.如何延长蓝牙耳机寿命。如果你对蓝牙相关知识具有兴趣,不妨继续往下阅读哦。 一、蓝牙测试概述 1. 蓝牙无线技术的基本概念介绍 蓝牙是目前非常通用的短距离无线传输技术。由于它可以被用来代替有线电缆,其花费相对要较低,并且易于操作。这些要求对蓝牙技术提出了挑战,蓝牙技术通过多种手段满足这些挑战。蓝牙的无线电单元采用调频扩展频谱方式(FHSS)设计,设计重点在低功耗,低费用和在工业、科学、医疗无线电频段抗干扰性能。 蓝牙设备工作于ISM(工业、科学、医学)频段,通常是在2.402GHz至2.4835GHz之间的79个信道上运行,每个信道占用1M带宽。并可以在79个信道上进行跳频。它使用称为高斯频移键控(GFSK)的数字频率调制技术实现彼此间的通信。 2. 蓝牙的测试模式 蓝牙设备能工作在不同的模式下。 正常模式:是个标准蓝牙通信过程。例如:测量仪器充当主设备,蓝牙设备充当从设备。 发射机测试模式:在这个模式下,发射机工作在特殊的状态下,可以使用测量仪器固定蓝牙设备的工作频率,然后对蓝牙发射机的各种参数进行测量。 环路测试模式:蓝牙设备被要求对测试仪所发的包进行解码并返回使用同样包类型的预装数据。 3. 测试的建立 (1)测试条件建立 蓝牙中跳频技术对信号的分析增加了难度。对蓝牙装置的功率容量测试需要跳频工作方式,而进行参数测试时,则不需要跳频。因此,大部分测试中需要将跳频关掉。 (2)测试搭建 测试搭图建如下: 测试设置1:可以满足发射机杂散测试、接收机杂散测试和频率范围测试等等,因为只有蓝牙模拟器不足以对这些测试项进行测试,需要使用相关的测量设备,例如:频谱仪。图中先使用蓝牙设备通过功率分配器连接到蓝牙模拟器,使用蓝牙模拟器控制蓝牙设备进入发射机测试模式,并固定蓝牙设备的工作频率(也就是关闭跳频),然后连接频谱仪到功率分配器的另一个端口,对蓝牙设备进行测量。 测试设置2:可以满足发射机输出功率、功率控制测试和调制频谱测试等等,因为许多蓝牙模拟器已经具备这几种简单的测试了,例如:蓝牙综合测试仪。图中使用蓝牙设备通过功率分配器连接到蓝牙模拟器,使用蓝牙模拟器控制蓝牙设备进入发射机测试模式,并使用蓝牙模拟器内部测试设置功能控制发射类型(跳频打开或关掉,不同的数据包等等)以保证提供正确的测试条件,然后对蓝牙设备进行测量。 二、蓝牙耳机的寿命 蓝牙耳机的正常寿命一般还是与它的电池寿命息息相关。一般蓝牙耳机的电池可连续通话8-10小时,听音乐6-8小时,可待机15-30天。蓝牙耳机电池寿命的长短主要是根据电池质量的好坏有关系,好质量的无线蓝牙耳机电池可以使用时间一般是2-3年。 三、如何延长蓝牙耳机的寿命 1、蓝牙耳机的电池都是内置的锂电池,是不可以更换的。平时使用蓝牙耳机要注意保护好电池,不要过度的使用,要及时的给蓝牙耳机充电。 2、切勿将蓝牙耳机暴露在液体或潮湿的地方。 3、切勿使用研磨性溶剂清洁蓝牙耳机。 4、切勿将蓝牙耳机放置在温度极高或极低的地方,最佳存放环境为-10度到+60度,否则会影响蓝牙耳机的使用寿命。 5、蓝牙耳机远离温度变化很大及多尘的地方,切勿将蓝牙耳机暴露在明火之中,避免爆炸危险。 6、切勿将蓝牙耳机接触尖锐对象,会造成刮痕或损坏。 7、切勿将任何物件插入蓝牙耳机内,会损坏内部组件。 8、切勿尝试拆卸蓝牙耳机。 以上便是此次小编带来的“蓝牙”相关内容,通过本文,希望大家对蓝牙测试、蓝牙耳机寿命以及延长蓝牙耳机寿命的方法具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

    时间:2021-01-22 关键词: 蓝牙测试 蓝牙 指数

  • 大佬带你看蓝牙发展史,详细阐述蓝牙配对、连接

    大佬带你看蓝牙发展史,详细阐述蓝牙配对、连接

    蓝牙技术是当今应用最多的技术之一,采用蓝牙技术,我们可以实现数据的传输以及其它功能。上篇文章中,小编对蓝牙手机的功能和选择要点有所阐述。为增进大家对蓝牙的了解,本文将对蓝牙配对和连接的过程以及蓝牙的发展予以介绍。如果你对蓝牙相关内容具有兴趣,不妨继续往下阅读哦。 一、蓝牙配对过程、连接建立过程 蓝牙的建立过程是一个复杂的过程,即使有过相当一段工作和使用经验的人,如果不仔细去了解还是理解不全。 平时我们用蓝牙耳机听音乐,和不同的设备共享文件,打电话等,都有一个配对--连接--传输数据的过程。 蓝牙配对过程,其实就是一个认证的过程。 为什么不配对便无法建立连接? 任何无线通信技术都存在被监听和破解的可能,蓝牙SIG为了保证蓝牙通信的安全性,采用认证的方式进行数据交互。同时为了保证使用的方便性,以配对的形式完成两个蓝牙设备之间的首次通讯认证,经配对之后,随后的通讯连接就不必每次都要做确认。所以认证码的产生是从配对开始的,经过配对,设备之间以PIN码建立约定的link key用于产生初始认证码,以用于以后建立的连接。 所以不配对,两个设备之间便无法建立认证关系,无法进行连接及其之后的操作,所以配对在一定程度上保证了蓝牙通信的安全,当然这个安全保证机制是比较容易被破解的,因为现在很多个人设备没有人机接口,所以PIN码都是固定的而且大都设置为通用的0000或者1234之类的,所以很容易被猜到并进而建立配对和连接。 蓝牙的连接过程 现在的蓝牙芯片供应商提供的技术支持能力相当强大,有完整的硬件和软件解决方案。对于应用而言,提供了固件用于实现底层协议栈,提供了profile库及源代码规范了各种应用,开发人员只要专注于应用程序开发就可以了。对于蓝牙底层的一些东西往往不甚了了。以前我也是这样子的,最近在做一个自动搜索以实现自动连接的应用,发现还是需要了解一些底层的机制的。 我们可以很容易的进行操作在一个手机和免提设备之间建立连接,那么这个连接是怎么建立起来的呢? 首先,主设备(master,即发起连接的设备)会寻呼(page)从设备(slave,接收连接的设备),master会已跳频的方式去寻呼slave,slave会固定间隔地去扫描(scan)外部寻呼,即page scan,当scan 到外部page时便会响应response该page,这样两个设备之间便会建立link的连接,即ACL链路的连接。当ACL 链路连接建立后,主设备会发起channel的连接请求,即L2CAP的连接,建立L2CAP的连接之后,主设备采用SDP去查询从设备的免提服务,从中得到rfcomm的通道号,然后主设备会发起rfcomm的连接请求建立rfcomm的连接。然后就建立了应用的连接。 即link establish-》channel establish-》rfcomm establish-》connection。 二、蓝牙的发展 蓝牙的支持者很多,从最初只有五家企业发起的蓝牙特别兴趣小组(SIG)发展到现在已拥有了近3000个企业成员。根据计划,蓝牙从实验室进入市场经过三个阶段: 第一阶段是蓝牙产品作为附件应用于移动性较大的高端产品中。如移动电话耳机、笔记本电脑插卡或PC卡等,或应用于特殊要求或特殊场合,这种场合只要求性能和功能,而对价格不太敏感,这一阶段的时间大约在2001年底到2002年底。 第二阶段是蓝牙产品嵌入中高档产品中,如PDA、移动电话、PC、笔记本电脑等。蓝牙的价格会进一步下降,估计其芯片价格在10美元左右,而有关的测试和认证工作也将初步完善。这一时间段是2002年~2005年。 第三阶段是2005年以后,蓝牙进入家用电器、数码相机及其他各种电子产品中,蓝牙网络随处可见,蓝牙应用开始普及,蓝牙产品的价格在2美元~5美元之间,每人都可能拥有2-3个蓝牙产品。 就目前而言,蓝牙产品的市场化正处于第二阶段的起步期。预计到2006年底,蓝牙将会有超过10亿的无线用户,其中包括5亿多使用无线互联网访问服务的用户。第三代移动通信技术将为蓝牙互联提供更大的市场,蓝牙互联技术允许手机、便携设备、个人电脑、笔记本电脑和第三方的接入设备互相连接在一起。安装蓝牙模块的设备将从2001年的不足100万台增加到2006年的16亿台。 蓝牙技术的主要市场将是低端无线联网领域,提供简单方便的无线联网技术是业内最初研发“蓝牙”标准的初衷。 以上便是此次小编带来的“蓝牙”相关内容,通过本文,希望大家对蓝牙配对和连接的过程以及蓝牙发展史具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

    时间:2021-01-22 关键词: 配对 蓝牙 指数

  • 蓝牙耳机知多少?蓝牙耳机功能+选择介绍

    蓝牙耳机知多少?蓝牙耳机功能+选择介绍

    蓝牙,已经是我们生活中的常见技术了,不论是手机还是电脑,都已具备蓝牙功能。在往期文章中,小编对蓝牙技术有所阐述。为增进大家对蓝牙的了解,本文将对蓝牙耳机的功能以及蓝牙耳机的选择予以介绍。如果你对蓝牙,抑或是蓝牙相关内容具有兴趣,不妨继续往下阅读哦。 一、蓝牙耳机的功能有哪些 不管消费者喜欢与否,蓝牙耳机离我们每个手持移动智能终端的用户是越来越近了。不然,那些不再预留3.5mm耳机插孔的耳机或平板的声音该如何安放呢?更何况,随着蓝牙技术的发展,蓝牙耳机的功能早已是今非昔比,不可同日而语了。现在的蓝牙耳机,有哪些功能?不妨跟随我们的脚步一起去看看。 功能一:利用音频媒体设备听音乐 这个自然是毫无疑问的了,相当大一部分用户置办蓝牙耳机都是为了很好的行走过程听音乐,上下班拥挤的地铁里,能够安静的享受属于自己的音乐空间,是一个非常好的缓解工作压力和情绪的途径。而对于运动健身一族,蓝牙耳机的配置就更有必要了,能够激发运动潜能,也能降低运动的单调感和枯燥感,有百利而无一害。 功能二:利用通话媒体设备打电话 对于电话较多的消费者而言,时时举着大屏手机打电话,着实是一件力气活,也无法解放自己的左右手。而对于开车一族,蓝牙耳机的沟通便捷性,更是首屈一指。不用违反交规,也不用在不合适事宜的时候,接听一些比较私密的电话。便捷的同时,安全系数又高。 功能三:兼容其他软件,无线操作 消费者在购买蓝牙耳机之前,一定要注意蓝牙耳机的兼容性问题,只要蓝牙耳机规格和移动终端相兼容,而蓝牙耳机目前有主要的两大规格:HandfreeProfile(HFP)和HeadsetPro-file(HSP)。HFP代表免提功能,而HSP则代表耳机功能。消费者必须先弄清楚自己的手机支持哪种规格,再挑选合适的蓝牙耳机配对使用HFP格式的蓝牙耳机支持手机功能比较完整,消费者可在耳机上操作手机设定好的重拨、来电保留、来电拒听等免提选项功能。也有部分机型同时支持HFP与HSP。 二、蓝牙耳机的选择 选购蓝牙耳机时,主要从以下几方面考虑: 1.产品的质量 购买一款蓝牙耳机更应该重视产品的质量和性能,比如电池使用时间、辐射量的高低等。而一般劣质或质量较次的蓝牙耳机,出于成本的控制,不论在做工上,还是用料上都不能得到保证,产品质量较差,实际使用功能数据相差很大,且辐射量很高。 2.通话质量 因为通话质量是衡量一个蓝牙耳机品质优劣的基本参数,一般情况下,使用杆式设计的蓝牙耳机,因其麦克风距离嘴边更近,所获得的通话质量相对优于其他类型的产品。 3.待机时间 因为这和手机的日常使用一样,耳机待机时间越长,就能避免时常充电的烦恼,这也是衡量蓝牙耳机性能的标准之一。 4.佩带舒适度 人的耳朵是比较娇弱的,如果耳机的耳挂材质不好,或者设计上存在一些缺陷,则在佩带的时间长后,就会产生不适的感觉。因此在购买前应该仔细检查,选择适合自己耳形的蓝牙耳机。 5.用途 选购蓝牙耳机,主要是为了什么而购买呢?那要看你自己主要是用它来做什么——①用于语言学习。只需选用价格较低的头戴式耳机就行,以耳罩式带音量调节为好,②用于听新闻。普通的电磁式耳机即可。③用于听音乐。一般性欣赏音乐,只需购买中档机,如听诊式或头戴式动圈耳机。若为欣赏高质量音乐,则应该不计较价格,选购高保真耳机,如优质动圈式、平膜式或电容式耳机。其中高性价比的BRD式耳机为首选。④使用方便。无线蓝牙耳机不用连线,使用极为方便,另外还有带收音功能的耳机,可使你随时收听各类语言和音乐节目。⑤声道。单声道和双声道功放设备要分别配单、双声道的耳机。 6.兼容性 选购蓝牙耳机时,最重要的问题是手机与耳机是否兼容。有些蓝牙耳机与手机不兼容,主要是因为规格不同。蓝牙耳机主要有三大规格———HandfreeProfile(HFP)和HeadsetPro-file(HSP)和A2DP三种。HFP代表免提功能,而HSP则代表耳机功能。消费者必须先弄清楚自己的手机支持哪种规格,再挑选合适的蓝牙耳机配对使用。A2DP是指高级音频传送规格,允许传输立体声音频信号,质量相对于HFP和HSP要好得多。 HFP格式的蓝牙耳机支持手机功能比较完整,消费者可在耳机上操作手机设定好的重拨、来电保留、来电拒听等免提选项功能。诺基亚、摩托罗拉、索尼爱立信等推出的蓝牙耳机几乎都以支持HFP格式为主。也有部分机型同时支持HFP与HSP.如派美特蓝牙耳机是A2DP格式的,兼容HFP和HSP格式,是目前最好的格式版本。 7.芯片品牌 蓝牙耳机的芯片供应商主要有三大公司,一是英国的CSR公司,另一个是美国的Broadcom公司,Broadcom的产品在市场上的比重占到80%以上。 8.传输距离 蓝牙耳机的传输距离也是大家比较关心的问题。蓝牙耳机的传输距离与蓝牙版本无关,主要取决于技术的先进程度。PowerClass2的标准传输距离10米;而升级的PowerClass1则将传输距离提升到100米,并且提供Hi-Fi立体声效果。一般而言,手机与蓝牙耳机的距离不会太远,比较保险的传输距离约为2米至3米。 9.版本 消费者采购蓝牙耳机时,经常会看到Bluetooth1.1、1.2、2.0+EDR、2.1+EDR等数字,数字代表不同规格标准。目前以1.1最普遍、1.2是新的主流、2.0是2006年推出,2.1+EDR版本,最新是3.0是主流,4.0是最新蓝牙耳机技术,这些数字代表着版本的不同,同时也代表着该耳机抗干扰的蓝牙耳机能力。蓝牙版本不同,关乎接收信号的品质。新版本更强调能克服杂讯干扰。新版本都可以向下兼容,消费者选购时应衡量价格和需求。 10.外形 除功能性考虑外,蓝牙耳机的外观造型以及佩戴舒适度也是消费者选购时必须留意的关键。每个人脸形不同,用户在购买前要试一试佩戴舒适度,再出手购买。 以上便是此次小编带来的“蓝牙”相关内容,通过本文,希望大家对蓝牙耳机的功能和如何选择蓝牙具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

    时间:2021-01-22 关键词: 蓝牙耳机 蓝牙 指数

  • MEMS加速度计应用前景解析,典型MEMS工艺流程介绍

    MEMS加速度计应用前景解析,典型MEMS工艺流程介绍

    MEMS技术是目前很多厂家都在使用的先进技术之一,在前两篇文章中,小编对MEMS存储设备请求调度算法以及MEMS存储设备的故障管理有所介绍。为增进大家对MEMS的了解,本文将对典型的MEMS工艺流程以及MEMS加速度计的运用前景予以阐述。如果你对MEMS具有兴趣,不妨继续往下阅读哦。 一、典型MEMS工艺流程 MEMS表面微机械加工工艺是指所有工艺都是在圆片表面进行的MEMS制造工艺。表面微加工中,采用低压化学气相淀积(LPCVD)这一类方法来获得作为结构单元的薄膜。表面微加工工艺采用若干淀积层来制作结构,然后释放部件,允许它们做横向和纵向的运动,从而形成MEMS执行器。最常见的表面微机械结构材料是LPVCD淀积的多晶硅,多晶硅性能稳定且各向同性,通过仔细控制淀积工艺可以很好的控制薄膜应力。此外,表面微加工工艺与集成电路生产工艺兼容,且集成度较高。 下面结合北京大学微系统所的MEMS标准工艺,以一个MEMS中最主要的结构——梁为例介绍一下MEMS表面加工工艺的具体流程。 1.硅片准备 2.热氧生长二氧化硅(SiO2)作为绝缘层 3.LPCVD淀积氮化硅(Si3N4)作为绝缘及抗蚀层 4.LPCVD淀积多晶硅1(POLY1)作为底电极 5.多晶硅掺杂及退火 6.光刻及腐蚀POLY1,图形转移得到POLY1图形 7.LPCVD磷硅玻璃(PSG)作为牺牲层 8.光刻及腐蚀PSG,图形转移得到BUMP图形 9.光刻及腐蚀PSG形成锚区 10.LPCVD淀积多晶硅2(POLY2)作为结构层 11.多晶硅掺杂及退火 12.光刻及腐蚀POLY2,图形转移得到POLY2结构层图形 13.溅射铝金属(Al)层 14.光刻及腐蚀铝层,图形转移得到金属层图形 15.释放得到活动的结构 至此,我们利用MEMS表面加工工艺完成了一个梁的制作。这个工艺流程中共有五块掩膜版,分别是: 1.POLY1,用的是阳版,形成的多晶1图形用来提供机械层的电学连接,地极板或屏蔽电极; 2.BUMP,用的是阴版,在牺牲层上形成凹槽,使得以后形成的多晶硅机械层上出现小突起,减小在释放过程或工作过程中机械层与衬底的接触面积,起一定的抗粘附作用; 3.ANCHOR,用的是阴版,在牺牲层上刻孔,形成机械层在衬底上的支柱,并提供电学连接; 4.POLY2,用的是阳版,用来形成多晶硅机械结构; 5.METAL,用的是阳版,用来形成电连接或测试接触。 二、MEMS加速度计的运用前景 MEMS传感器即微机电系统(Microelectro Mechanical Systems),是在微电子技术基础上发展起来的多学科交叉的前沿研究领域。经过四十多年的发展,已成为世界瞩目的重大科技领域之一。它涉及电子、机械、材料、物理学、化学、生物学、医学等多种学科与技术,具有广阔的应用前景。而MEMS加速度计便是其中一种。 目前利用3轴MEMS加速度计开发出的新型应用有: 带有运动检测和状态感知的手机以监视手机所在位置和被使用状况。这种传感器能够提供很多功能,例如更直观的用户界面和延长电池寿命的智能电源管理。 带有硬盘保护系统的笔记本计算机和媒体播放器。随着对便携式设备存储能力要求的增加,测量冲击和跌落事件有助于提高产品的鲁棒性。 可移动游戏机,通过改善当前游戏的界面和开发新的基于运动的游戏而提供更多的互动、直观和趣味的游戏体验。数码相机,通过检测位置、运动和振动而自动地帮助用户更好地拍照。 由于这些新型功能可以使产品更具特色,因而3轴MEMS加速度计也得到便携设备厂商的认同。在价格降低到可以接受的水平后,3轴MEMS加速度计将广泛应用于手机、媒体播放器、视频游戏机、照相机和计算机等产品上,有着巨大的市场潜力 以上便是此次小编带来的“MEMS”相关内容,通过本文,希望大家对典型MEMS工艺和MEMS加速度计前景具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

    时间:2021-01-21 关键词: MEMS MEMS加速度计 指数

  • 深入理解MEMS,MEMS存储设备故障管理

    深入理解MEMS,MEMS存储设备故障管理

    MEMS也就是微机电系统,对于MEMS系统,我们或多或少有所认识。上篇文章中,小编对MEMS存储设备的请求调度算法有所介绍。为增进大家对MEMS的了解,本文将对MEMS存储设备的故障管理予以介绍。如果你对MEMS以及相关内容具有兴趣,不妨继续往下阅读哦。 MEMS全称Micro Electromechanical System,微机电系统。是指尺寸在几毫米乃至更小的高科技装置,其内部结构一般在微米甚至纳米量级,是一个独立的智能系统。主要由传感器、动作器(执行器)和微能源三大部分组成。MEMS存储器是一种新型存储器件,具有高密度、低功耗、非易失、多探针并行访问等特点,相对于传统磁盘具有明显优势。可以填补RAM和磁盘之间的性能差距,可在计算机系统中承担多种角色,为新型高性能海量存储系统结构研究带来新思路和新方法。MEMS是一个独立的智能系统,可大批量生产,其系统尺寸在几毫米乃至更小,其内部结构一般在微米甚至纳米量级。在下面的内容中,小编将基于几个方面对MEMS存储设备故障管理加以阐述,详细如下。 一、内部故障 磁盘常见的故障有两种:可恢复故障和不可恢复故障。MEMS存储设备也会出现类似的故障。但是,MEMS存储设备可以采用多个探针来弥补组件故障,包括可能会导致设备不可用的故障。 对MEMS存储设备来说,有效的纠错码可以通过分布在多个探针上的数据计算得到。在G2模型中,每个512字节的数据块和ECC码分布在64个探针之问。Ecc码包括一个垂直部分和一个水平部分。ECC码水平部分可以从故障的扇区得到恢复,而垂直部分指出哪些扇区可以作为故障扇区对待,同时将大的错误转化为扇区擦除操作。这个简单的机制说明大部分的内部故障是可以恢复的。 像磁盘一样,MEMS存储设备也保留了一些的备用空间(spare space),用来存储由于探针和介质故障而无法保存在默认位置的数据。MEMS存储设备的多个探针可以在一个磁道上并行访问数据,可以避免由于故障需要重新映射带来的性能和预测开销。而且,通过在每个磁道设置一个或者多个备用探针(spare tips),不可读取的数据被重新映射到空闲探针相同的扇区。 二、设备故障 MEMS存储设备也很容易受到不可恢复的故障影响:外部机械或者静电强大的作用力能够损坏触动器的集电刷或者折断弹簧,破坏介质表面,损坏设备的电子装置或者破坏数据通道。如果出现这些故障,可以采用与磁盘一样的方式来处理。例如,采用设备内部的冗余和周期性的备份来处理设备故障。 MEMS存储设备的机械特性在一些容错机制中更适合处理读一更新一写(read-modify-write)操作。一般的磁盘需要转完整的一圈才能到达相同的扇区,而MEMS存储设备可以快速的反转方向,大大减少了读一更新一写的延迟。 三、故障恢复 同磁盘一样,文件系统和数据库系统需要维护存储在MEMS存储设备上对象内部的一致性。虽然采用同步写操作对性能具有一定影响,但是,MEMS存储设备的低服务时间可以减少这种损失。另外,MEMS存储设备没有转轴启动的时间,因此设备启动速度快,大概只需要0.Sms。即使是高端磁盘,也需要15-25s的时间来启动转轴和完成初始化。同时,因为不需要启动转轴,就不需要考虑启动转轴需要的功耗,也就没必要采取任何减少功耗的技术,这些都使得所有的MEMS存储设备可以同时启动,系统启动的时间从秒级降到毫秒级。 以上便是此次小编带来的“MEMS”相关内容,通过本文,希望大家对MEMS存储设备故障管理具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

    时间:2021-01-21 关键词: 故障 MEMS 指数

  • 深入理解MEMS,MEMS存储请求调度算法介绍

    深入理解MEMS,MEMS存储请求调度算法介绍

    MEMS也即微机电系统,电子专业的朋友对MEMS都具备一定认识。在往期文章中,小编对MEMS交换、MEMS封装等有所介绍。为增进大家对MEMS的了解程度,本文中小编将对MEMS存储设备的请求调度算法以及数据布局策略予以介绍。如果你对MEMS相关内容具有兴趣,不妨继续往下阅读哦。 一 引言 MEMS(Micro ElectromechanicalSystem,微机电系统)存储器是一种新型存储器件,具有高密度、低功耗、非易失、多探针并行访问等特点,相对于传统磁盘具有明显优势。可以填补RAM和磁盘之间的性能差距,可在计算机系统中承担多种角色,为新型高性能海量存储系统结构研究带来新思路和新方法。 二 MEMS存储设备的请求调度算法 (一)磁盘的请求调度算法 第一种是最简单的、性能最差的先来先服务(FCFS):第二种算法是循环查找(CLOOKLBN)。这种算法是按照LBN升序的方式进行服务,也就是说当所有请求的LBN都落后于当前请求的LBN话,就从涉及到最小LBN的请求开始服务:第三种是最短寻址时间优先(sSTF—BN),主要思想是选择具有最小寻址延迟的请求,但是在实际应用中却很少使用。因为很少有主机操作系统具有用计算实际寻址距离或者预测寻址时问的信息,考虑到磁盘LBN到物理位置的映射的关系,大部分的SSTF算法使用的是最近访问的LBN和目标LBN之间的距离作为访问时间的近似,这种简化对磁盘是有效的:第四种是最短定位时间优先算法(SPTF),选择具有最小定位延迟的请求,对磁盘来说,SPTF算法与其它算法显着的不同在于它需要考虑寻道时间和旋转延迟。 将四种调度算法应用到Atalalok上,统计随机负载在不同的请求到达频率下Atlas l0k的响应时间。FCFS的性能是四种调度算法中性能最差的,同时,FCFS的性能随着负载请求的增加性能最快达到饱和。SSTFes LBN的性能比CLOOK LBN要好,SPTF的性能最好,而且SPTF性能达到饱和的速度最慢。 前三种调度算法((FCFS CLOOK LBN和SSTFes LBN)可以利用主机的软件系统简单有效的实现。考虑到磁盘LBN到物理位置的映射关系,实现这三种调度算法不需要详细的设备信息,只需要根据请求的LBN号来选择要服务的请求。SPTF算法通常是在磁盘驱动器的固件中实现,SPTF算法需要磁盘状态的准确信息、LBN到物理位置的映射信息、寻址时间和旋转延迟的准确预测信息等。 (二)MEMS存储设各请求调度算法 为了方便的将MEMS存储设备应用到计算机系统中,MEMS存储设备利用与磁盘相同的接口。为了证明现有的磁盘请求调度算法同样适用于MEMS存储设备,将上节中四种磁盘的请求调度算法应用到MEMS存储设备上。多数的请求调度算法,如SSTF LBN和CLOOKLBN,只需要知道LBN的信息,将LBN之间的距离作为定位时间的估计。SPTF算法涉及到寻址时间和旋转延迟。而MEMS存储设备只存在x轴和Y轴方向的寻址,没有旋转延迟。与磁盘相同的是,寻址时间是一维的,接近一个线性的LBN空间。与磁盘不同的是,MEMS存储设备在两个方向的寻址是并行完成的,选择较大的作为实际的寻址时间。由于x轴方向存在稳定时间,x轴方向的寻址时间总是比Y轴大。如果Y轴的寻址时间比较大,SPTF的性能仅比SSTF略有优势。利用Disksim。将磁盘的调度算法应用到MEMS存储设备上,统计不同的请求到达频率的随机负载下的平均响应时间。 四种调度算法在MEMS存储设备上具有和磁盘类似的性能:FCFS性能最差,SPTF性能最好。但是,FCFS和基于LBN的算法之问的差距比磁盘小。因为在MEMS存储设备寻址时间在整个服务时间中占很大比例。CLOOK LBN和SSTF LBN性能差距要比磁盘小。 三 数据布局策略 (一)小粒度非顺序访问 MEMS存储设备数据访问具有与磁盘类似的特性,短距离寻址比长距离寻址要快。与磁盘不同的是,由于弹簧的回复力的存在,使得不同位置上触动器作用力的影响不同。弹簧作用力对每个tip的访问区域不同位置的影响。弹簧的作用力随着sled位移的增加而增大,对于短距离来说定位时间反而较长。因此,在考虑查找小粒度、常用的数据项的时候,除了考虑寻址距离,还要考虑sled距中心位置的距离。 (二)大粒度顺序访问 MEMS存储设备和磁盘的流传输速率相似:Atals 10K的流传输速率是17,3-25,2MB/s,MEMS存储设备的流传输速率为75,9MB/s。MEMS存储设备的定位时间比磁盘低一个数量级,对MEMS存储设备来说,定位时间对于大批量数据传输影响很小。例如:一个256KB的读请求在X轴不同位置上的服务时间,在1250个柱面的不同请求之间的服务时间仅差10%。同时减少了大粒度、顺序传送的数据对局部性的需求。但是,对磁盘来说,寻址距离是影响寻址时间的重要因素。同样,对一个256KB大小的请求,长距离寻址时间可以使整个服务时间增加1倍。 (三)双向数据布局 为充分利用MEMS存储设备的访问特性,引入了一种双向布局策略。小数据存放在最中间的小区域中,大的、顺序的流数据存放在外围的小区域中。这种策略可以采用5X5的网格方式实现。 在假设各个请求内部不存在相关性的前提下,比较双向布局、“organ pipe”布局和一种优化的磁盘布局的性能。在“organpipe”布局策略中,最经常访问的文件存放在磁盘最中间的磁道上,使用频率稍差的文件存放在中间磁道的两侧,最不经常使用的文件存放在靠近最内部和最外部磁道上。这种布局策略对磁盘是优化的,缺点是需要根据文件的使用频率定期的移动文件,还需要维护文件的一些状态来记录文件的使用频率。 以上便是此次小编带来的“MEMS”相关内容,通过本文,希望大家对MEMS存储设备的请求调度算法具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

    时间:2021-01-21 关键词: MEMS MEMS存储 指数

  • 你了解示波器带宽吗?两大示波器高级功能介绍

    你了解示波器带宽吗?两大示波器高级功能介绍

    在这篇文章中,小编将对示波器加以介绍以帮助大家增进对它的了解程度,主要内容在于阐述示波器带宽以及示波器的两大高级功能,和小编一起来阅读以下内容吧。 一、示波器基本介绍 首先,我们一起来看看示波器的概念,示波器是一种用途十分广泛的电子测量仪器。它能把肉眼看不见的电信号变换成看得见的图像,便于人们研究各种电现象的变化过程。可以说,示波器起到了化无形为有形的作用。示波器利用狭窄的、由高速电子组成的电子束,打在涂有荧光物质的屏面上,就可产生细小的光点(这是传统的模拟示波器的工作原理)。在被测信号的作用下,电子束就好像一支笔的笔尖,可以在屏面上描绘出被测信号的瞬时值的变化曲线。利用示波器能观察各种不同信号幅度随时间变化的波形曲线,还可以用它测试各种不同的电量,如电压、电流、频率、相位差、调幅度等等。 二、示波器带宽介绍 通过上面的介绍,相信大家对示波器已经有了基本认识,那么示波器带宽又是什么呢? 示波器带宽是指输入一个幅度相同,频率变化的信号,当示波器读数比真值衰减3dB时,此时的频率即为示波器的带宽。也就是说,输入信号在示波器带宽处测试值为真值-3dB,带宽不是示波器能显示的最高频率。一般情况下,示波器带宽应为所测信号最高频率的3~5倍。 与示波器带宽规格紧密相关的是其上升时间参数。具备高斯频响的示波器,按照10%到90%的标准衡量,上升时间约为0.35/fBW。具备最大平坦频响的示波器上升时间规格一般在0.4/fBW范围上,随示波器频率滚降特性的陡度不同而有所差异。如果在进行上升时间和下降时间参数测量时允许20%的定时误差,那么带宽为1GHz的示波器就能满足该数字测量应用的要求。但如果要求定时精度在3%范围内,那么采用带宽为2GHz的示波器更好。 三、示波器高级功能 示波器高级功能有很多,小编在这里仅对示波器的其中两个高级功能予以介绍,分别有关于垂直分辨率和触发。 (一)改善垂直分辨率 大部分示波器是一种常用的电子检测仪器,被广泛的应用于多个行业当中。的A/D分辨率为8个比特。用不同的采集模式,可按如下所述,通过求相邻采样的平均值来提高垂直分辨率。那么,通过求平均值和采用高分辨率模式可将分辨率提高多少呢?理论上讲,增加值为0.5Log2N,其中N为相邻采样的平均数。 实际情况是,2个字节的存储深度限制了这一增加。两个字节为16位。保留其中一位作为符号位,剩余的15位用作数据数值。舍入误差使第14位和第15位成为随机值,从而使实际限值变为13位。因此,改善可从约六个有效位开始,用高度过采样时可增至约13位。 (二)触发 示波器是一种常用的电子检测仪器,被广泛的应用于多个行业当中。的触发功能可在信号中的正确点进行同步水平扫描,对明确的信号检定而言,是不可缺少的。触发控制器允许您稳定重复波形并捕捉单次触发波形。 在高速调试应用中,您的电路可能会工作99.999%或更长的时间。而正是.001%的时间会造成您的系统崩溃或正是您需要更详细分析波形的一部分。高级触发功能,如AB双重事件触发、窗口触发、逻辑认证等等都有助于隔离问题,速度比在采集后搜索上百万个数据样本快很多。 以上就是小编这次想要和大家分享的有关示波器的内容,希望大家对本次分享的内容已经具有一定的了解。如果您想要看不同类别的文章,可以在网页顶部选择相应的频道哦。

    时间:2021-01-20 关键词: 带宽 示波器 高级功能

  • 分不清三坐标测量仪和影像测量仪?大佬带你看二者区别!

    分不清三坐标测量仪和影像测量仪?大佬带你看二者区别!

    一直以来,测量仪都是大家的关注焦点之一。因此针对大家的兴趣点所在,小编将为大家带来三坐标测量仪、影像测量仪以及二者之间的区别的相关介绍,详细内容请看下文。 一、三坐标测量仪 三坐标测量仪是指在一个六面体的空间范围内,能够表现几何形状、长度及圆周分度等测量能力的仪器,又称为三坐标测量机或三坐标量床。三坐标测量仪又可定义“一种具有可作三个方向移动的探测器,可在三个相互垂直的导轨上移动,此探测器以接触或非接触等方式传递讯号,三个轴的位移测量系统(如光栅尺)经数据处理器或计算机等计算出工件的各点(x,y,z)及各项功能测量的仪器”。三坐标测量仪的测量功能应包括尺寸精度、定位精度、几何精度及轮廓精度等 。 二、影像测量仪 影像测量仪是基于机器视觉的自动边缘提取、自动理匹、自动对焦、测量合成、影像合成等人工智能技术,具有点哪走哪自动测量、CNC走位自动测量、自动学习批量测量的功能,影像地图目标指引,全视场鹰眼放大等优异的功能。同时,基于机器视觉与微米精确控制下的自动对焦过程,可以满足清晰影像下辅助测量需要,亦可加入触点测头完成坐标测量。支持空间坐标旋转的优异软件性能,可在工件随意放置或使用夹具的情况下进行批量测量与SPC结果分类。仪器适用于以二维平面测量为目的的一切应用领域。这些领域有:机械、电子、模具、注塑、五金、橡胶、低压电器,磁性材料、精密五金、精密冲压、接插件、连接器、端子、手机、家电、计算机(电脑)、液晶电视(LCD)、印刷电路板(线路板、PCB)、汽车、医疗器械等。 经过介绍,大家对三坐标测量仪以及影像测量仪已经有了基本了解,那么二者之间有何区别呢?我们继续往下看。 三、三坐标测量仪和影像测量仪的区别 三坐标测量仪和影像测量仪的区别主要可以从三个方面加以阐述,分别是测量维度、测量方式和测量工件。下面,小编将对这三个方面进行一一介绍。 1、测量维度不同 三坐标测量仪的测量维度是三维坐标系,而影像测量仪的测量维度是二维空间坐标系。由此可以看出,三坐标测量仪同影像测量仪相比,三坐标测量仪能够多测量一个维度的坐标,这也意味着,三坐标测量仪的测量精度很高。 2、测量方式不同 聊完测量维度方面的不同,我们再来看看二者在测量方式上具体有何不同。 三坐标测量仪和影像测量仪的测量方式是存在一定差异的,三坐标测量仪测量时需要与被测物件接触,不停的获取接触点的三维坐标值,最后得出测量结果。而影像测量仪无需同被测物件接触,影像测量仪经由光学镜头就可以进行测量。三坐标测量仪和影像测量仪的测量方式并无好坏之分,只是适用的场景不同。 3、主要测量工件类型不同 通过“测量维度不同“和”测量方式不同“的介绍,大家对三坐标测量仪和影像测量仪的测量有了一定的了解。正是因为这两点不同,所以三坐标测量仪和影像测量仪在被测类型上存在区别。对于轻薄工件,三坐标测量仪无法发挥它的优势。与此相对,在需要测量三维数据的场景下,影像测量仪则无法实现测量。由此可以看出,三坐标测量仪和影像测量仪其实是一对互补的器件。 通过上面的详细介绍,小编相信,大家对于三坐标测量仪、影像测量仪以及二者之间的3点区别已经具备了清晰的认识。最后,十分感谢大家的耐心阅读,想要了解更多相关内容,或者更多精彩内容,请一定关注我们网站哦。

    时间:2021-01-20 关键词: 测量仪 影像测量仪 三坐标测量仪

  • 泰克DMM6500数字万用表:15种测量功能+宽测量范围

    泰克DMM6500数字万用表:15种测量功能+宽测量范围

    在下述的内容中,小编将会对泰克科技的DMM6500数字万用表的相关消息予以报道,如果数字万用表是用户想要了解的焦点之一,不妨和小编共同阅读这篇文章哦。一、引言数字万用表,一种多用途电子测量仪器,一般包含安培计、电压表、欧姆计等功能,有时也称为万用计、多用计、多用电表,或三用电表。数字万用表适用于基本故障诊断的便携式装置,也有放置在工作台的装置,有的分辨率可以达到七、八位。对于数字多用表来说,精度通常使用读数的百分数表示。例如,1%的读数精度的含义是:数字多用表的显示是100.0V时,实际的电压可能会在99.0V~101.0V之间。而本文即将详细阐述的DMM6500数字万用表,便是一款优秀的电子产品。二、DMM6500数字万用表概述DMM6500数字万用表是一种现代化台式 / 系统 DMM,提供了更多的测量功能、同类最优秀的测量能力,而且价格就不会超出用户的预算。DMM6500数字万用表最著名的特点是 5 英寸 (12.7 cm) 容性大触摸屏显示器,可以使用手势体感,简便地观察、互动及浏览测量数据。DMM6500数字万用表配有用户在台式万用表中预期的所有测量功能,DMM6500数字万用表有 15 种测量功能,包括电容、温度 (RTD、热电阻器和热电偶 )、使用可变电流源的二极管测试及高达 1 MS/s 的模数转换,这些现在都是标配。A/D 转换器,可以用来执行电压或电流测量,特别适合捕获瞬态异常信号,或帮助绘制功率事件曲线,比如当今电池供电的器件的工作状态。电流和电压可以使用可编程 1 MS/s 16 位模数转换器进行模数转换,可以直接采集波形,而不用使用单独的仪器。三、温度测量应用目前,市场上存在的大多仪器都能够对温度进行测量,DMM6500数字万用表同样具备温度测量的功能。当然,相对于一般的万用表而言,DMM6500数字万用表在温度测量方面提供了独特功能。除 RTD、热电阻器和热电偶功能外,用户可以为 DMM 配备一张内置 CJC 的 9 通道扫描仪卡,自动执行热电偶温度扫描。四、系统集成和编程DMM6500数字万用表在编程方面为用户提供了最大的灵活性。除传统 SCPI 编程(默认状态)外,DMM6500数字万用表还配有专为 Keithley 2000 或Keysight 34401A 开发的 SCPI 仿真功能。TSP® 脚本可以在仪器上直接运行强大的测试脚本,而不需使用外部电脑控制器。脚本是由仪器控制命令和 / 或程序语句组成的一个集合。程序语句控制脚本执行,提供了变量、函数、分支和循环控制等工具。用户可以创建强大的测量应用,而不需集成开发环境 (IDE)。测试脚本可以包含传统编程语言执行的任何程序序列(包括决策算法),因此仪器可以管理测试的方方面面,而不需要与电脑通信来制订决策。这消除了由于 GPIB、以太网或 USB 业务拥堵而导致的延迟,大大改善了测试时间。五、检修如果大家在使用DMM6500数字万用表是发觉到故障,首先是建议大家打厂家电话进行咨询并进行售后维修。如果大家的动手能力很强,可以通过以下几种方法寻找故障。1. 测电压法测量各关键点的工作电压是否正常,可较快找出故障点。如测A/D转换器的工作电压、基准电压等。2.短路法在前面所讲的检查A/D转换器方法里一般都采用短路法,这种方法在修理弱电和微电仪器时用得较多。3.断路法把可疑部分从整机或单元电路中断开,若故障消失,表示故障在断开的电路中。此法主要适合于电路存在短路的情况。经由小编的介绍,不知道你对DMM6500数字万用表是否充满了兴趣?如果你想对DMM6500数字万用表有更多的了解,不妨尝试度娘更多信息或者在我们的网站里进行搜索哦。

    时间:2021-01-20 关键词: 泰克 数字万用表 DMM6500

  • 如何选择频谱分析仪?如何检修频谱分析仪?

    如何选择频谱分析仪?如何检修频谱分析仪?

    以下内容中,小编将对频谱分析仪的相关内容进行着重介绍和阐述,主要内容在于如何选择一款频谱分析仪和如何解决频谱分析仪的失锁故障。希望本文能帮您增进对频谱分析仪的了解,和小编一起来看看吧。 一、什么是频谱分析仪 频谱分析仪是研究电信号频谱结构的仪器,用于信号失真度、调制度、谱纯度、频率稳定度和交调失真等信号参数的测量,可用以测量放大器和滤波器等电路系统的某些参数,是一种多用途的电子测量仪器。它又可称为频域示波器、跟踪示波器、分析示波器、谐波分析器、频率特性分析仪或傅里叶分析仪等。 频谱分析仪分为实时分析式和扫频式两类。前者能在被测信号发生的实际时间内取得所需要的全部频谱信息并进行分析和显示分析结果;后者需通过多次取样过程来完成重复信息分析。 二、如何选择频谱分析仪1.频率范围频谱分析仪只有在特定的频率范围内才能正常工作,所以大家在选购频谱分析仪的时候,需要考虑到自己未来可能将频谱分析仪应用到的情况,最好选择频率测量范围大的频谱分析仪。2.输入功率频谱的输入功率按照分类可以划分为两类,一是脉冲输入功率,二是平均连续功率。那么,何为脉冲输入功率呢?其实很简单,即频谱能测量的脉冲输入功率的值。而连续输入信号的最大功率值也就是我们谈及的平均连续功率。3.输入阻抗频谱分析仪对信号源展现的终端阻抗也就是输入阻抗。根据实际经验,各种仪器的阻抗值通常不太相同,如微波分析仪通常为50Ω,而对于有些系统,它的阻抗值就更高。请注意,如果阻抗不匹配将会对测量过程造成影响,主要是测量精度上的影响。 4.平均噪声电平(DANL)平均噪声电平相当于频谱自身噪声的大小,噪声的大小和待测的最小信号幅度之间存在一定关系。同大家想的一样,平均噪声电平自然是越小越好,因为平均噪声电平较大时,会对测量在误差方面造成影响。但是,平均噪声电平越小的设备,通常情况下造价会更高。所以,大家在选购频率分析仪的时候,需要综合考量它的性价比。5.前置放大器如果你需要测量微小信号,那么你需要在选购频谱分析仪的时候,考虑它是否有增加一个微小信号放大模块。如果没有,那么对应的频谱分析仪在测量微小信号的时候则会显得“力不从心”。 三、如何检修频谱分析仪失锁故障 如果频谱分析仪在2GHz处失锁6GHz处不失锁,说明是第一本振正常第二本振失锁;如果两个频点均失锁可能为第一本振失锁或第一、第二本振均失锁。原理图如下: 频谱分析仪的失锁故障检修步骤: (1)判断是否为第一本振失锁,按照“第一本振预置”检查,如果不正常按照第一本振预置调试中的检查步骤进行,如果正常则进行下一步。 (2)判断是否为第二本振失锁,按照“第二本振预置”检查,如果不正常则按照第二本振预置调试中的检查步骤进行,如果正常则进行下一步。 (3)判断是否为300MHz第三本振是否正常,如果这个本振失锁,实际为100MHz晶体振荡器锁定异常。此时测量外置的100MHz,如果此时信号抖动异常,可能就是100MHz晶体振荡器失锁。 (4)判断28.9MHz第四本振是否正常,这个振荡器为晶体振荡器,如果失锁可能偏离世纪频率点20kHz左右,要将频谱分析仪的频宽设置到足够小,大约100kHz才能够观察到。 以上便是小编此次想要和大家共同分享的有关频谱分析仪的内容,如果你对本文内容感到满意,不妨持续关注我们网站哟。最后,十分感谢大家的阅读,have a nice day!

    时间:2021-01-20 关键词: 分析仪 故障 频谱分析仪

  • 碳膜电位器的故障有哪些?如何检测碳膜电位器的故障并修复?

    碳膜电位器的故障有哪些?如何检测碳膜电位器的故障并修复?

    在这篇文章中,小编将介绍如何检测碳膜电位器的故障,并介绍如何对它进行修复。如果你对本文即将要讲解的内容存在一定兴趣,不妨继续往下阅读哦。 一、什么是碳膜电位器 碳膜电位器是在马蹄形的纸胶板上涂上一层碳膜制成。其阻值变化和中间触头位置的关系有直线式、对数式和指数式三种。碳膜电位器有大型、小型、微型几种,有的和开关一起组成带开关电位器。碳膜电位器的优缺点在于,电阻体是用经过研磨的碳黑,石墨,石英等材料涂敷于基体表面而成,该工艺简单,是目前应用最广泛的电位器。特点是分辩力高耐磨性好,寿命较长。缺点是电流噪声,非线性大, 耐潮性以及阻值稳定性差。 二、碳膜电位器的故障特征 碳膜电位器的故障特征主要可以划分为3类,分别如下。 1. 碳膜电位器内部引脚断路故障 出现这种故障时,音量电位器所在电路将出现异常,也即无法正常工作。在碳膜电位器中,具体体现为无声,或者无法彻底关闭音量。 2. 碳膜电位器因过电流而严重烧坏故障 出现这种故障时,碳膜电位器将出现损坏,造成开路现象。在该故障下,不转动碳膜电位器,将无任何噪音异常。当转动碳膜电位器以调节音量时,将产生“吱吱”的噪音。 3. 碳膜电位器转动噪声大 由于音量电位器时常被转动,所以这种故障主要出现在音量电位器中。小编想说,因为动片触点月碳膜之间的长时间摩擦,碳膜将会有一定程度的损坏。出现损坏时,动片与碳膜将会产生接触不良的现象。这种现象将直接造成音量电位器或音调电位器在使用过程中产生噪音。 三、碳膜电位器故障检测方法 碳膜电位器故障检测方法包含两种,一是碳膜电位器的阻值测量方法,二是碳膜电位器的试听检测方法。 (一)碳膜电位器的阻值测量方法 该方法又可以细分为两类,其一是在路测量,其二是脱开测量。通常情况下,我们主要采用脱开测量的方法。因为一般电位器的引脚用引线与电路板上的电路相连,焊下引线比较方便。此时采用脱开测量的方法,既能获得精准测量结果,又可以明确说明问题。 1、测量两固定引脚之间的阻值 测量得到的阻值在正常情况下应该等于电位器外壳上的标称阻值。在测量过程中,如果测量得到的结果与标称阻值相差甚远,则表明碳膜电位器是存在一些故障的,此时应当进行进一步排查。 2、检测阻值的变化情况 采用万用表欧姆档进行测量时,一支表棒搭定片,而另一支表棒搭动片。准备完毕后,转动旋转碳膜电位器的转柄,缓慢的从0到较大值,再进行逆过程。如果过程中出现指针跳动的情况,则应该重新测量。 (二)碳膜电位器的试听检测方法 音量电位器和音调电位器检测中主要会用到这种方法,作用在于检测噪声故障。测试时,于电路工作时,转动转柄以使得动片触点在碳膜上滑动。如果没有产生“吱吱“的噪声,则说明碳膜电位器是正常的。反之,则表明碳膜电位器存在故障。 四、碳膜电位器怎么修复 那么,当检测出碳膜电位器存在故障时,我们应当如何去修复它呢? 1.首先,用起子将碳膜电位器的外壳撬开以取下金属屏蔽壳,为下一步工作做好准备; 2.然后,我们需要对电阻片、簧片等地方的一些污垢、油渍,处理时,可以采用镊子夹上蘸有无水酒精的棉球。 3.当清理工作完成后,我们需要按照拆解的逆步骤来对碳膜电位器进行组装,由此,修复工作完成。 以上所有内容便是小编此次为大家带来的所有介绍,如果你想了解更多有关它的内容,不妨在我们网站或者百度、google进行探索哦。

    时间:2021-01-20 关键词: 检测 故障 碳膜电位器

  • 你对晶闸管有多了解?这4种晶闸管你都知道吗?

    你对晶闸管有多了解?这4种晶闸管你都知道吗?

    今天,小编将在这篇文章中为大家带来各种晶闸管的有关报道,主要包括光控晶闸管、可关断晶闸管、快速晶闸管和双向晶闸管,通过阅读这篇文章,大家可以对这四种晶闸管具备清晰的认识,主要内容如下。 一、光控晶闸管 光控晶闸管又称光触发晶闸管,是利用一定波长的光照信号来代替电信号对器件进行触发。光控晶闸管的伏安特性和普通晶闸管一样,只是随着光照信号变强其正向转折电压逐渐变低。 通常晶闸管有3个电极,控制极G、阳极A和阴极K。由于光控晶闸管的控制信号来自光的照射,没有必要再引出控制极,所以,只有两个电极(阳极A和阴极K)。但其结构与普通晶闸管一样,是由4层PNP型器件构成的。 光控晶闸管除了触发信号不同以外,其他特性基本与普通晶闸管相同,因此,在使用时可按照普通晶闸管的使用原则,只要注意它是光控这个特点就行了。 二、可关断晶闸管 我们再来看看可关断晶闸管,可关断晶闸管是一种通过门极来控制器件导通和关断的电力半导体器件。GTO既具有普通晶闸管的优点(耐压高、电流大、耐浪涌能力强、价格便宜),同时又具有GTR的优点(自关断能力、无须辅助关断电路、使用方便),是应用于高压、大容量场合中的一种大功率开关器件。广泛应用于电力机车的逆变器、电网动态无功补偿和大功率直流斩波调速等领域。 可关断晶闸管的结构和普通单向晶闸管一样,也是由PNPN四层半导体构成,外部也有三个电极,即门极G、阳极A和阴极K。普通单向晶闸管只构成一个单元器件,而可关断晶闸管则构成一种多元的功率集成器件,它的内部包含数十个甚至数百个共阳极的小GTO单元。为了实现门极控制关断,而将这些小GTO单元的阴极和门极特别设计成在器件内部并联。 三、快速晶闸管 我们再来看看快速晶闸管,快速晶闸管是普通晶闸管的一种派生器件,主要用于感应加热的中频电源装置。是用于较高频率的整流、逆变和变频电路的器具,并且可以在 400Hz以上频率工作的晶闸管。视电流容量大小,其开通时间为4~8微秒,关断时间为10~60微秒。主要用于较高频率的整流、斩波、逆变和变频电路。 快速晶闸管基本结构与普通晶闸管类似,只是为了适应中频应用的特点,其门极图形的设计更为复杂。由于采用了特殊的工艺降低了寿命,快速晶闸管开关特性得到很大改善,关断时间大大缩短,但这不利于器件通态特性,浪涌电流等性能。这些矛盾要在器件设计时总体考虑,使用者也应根据实际应用情况选择具体参教要求。 四、双向晶闸管 我们再来看看双向晶闸管,双向晶闸管是由N-P-N-P-N五层半导体材料制成的,对外也引出三个电极。双向晶闸管相当于两个单向晶闸管的反向并联,但只有一个控制极。双向晶闸管与单向晶闸管一样,也具有触发控制特性。不过,它的触发控制特性与单向晶闸管有很大的不同,这就是无论在阳极和阴极间接入何种极性的电压,只要在它的控制极上加上一个触发脉冲,也不管这个脉冲是什么极性的,都可以使双向晶闸管导通。尽管从形式上可将双向晶闸管看成两只普通晶闸管的组合,但实际上它是由7只晶体管和多只电阻构成的功率集成器件。 通过小编的介绍,想必大家对光控晶闸管、可关断晶闸管、快速晶闸管和双向晶闸管的基本信息以及晶闸管的结构已经具备一定了解。最后,小编诚心感谢大家的阅读。你们的每一次阅读,对小编来说都是莫大的鼓励和鼓舞。最后的最后,祝大家有个精彩的一天。

    时间:2021-01-20 关键词: 晶闸管 双向晶闸管 光控晶闸管

  • 如何选择合适的晶振?如何更好保护晶体振荡器?

    如何选择合适的晶振?如何更好保护晶体振荡器?

    在这篇文章中,小编将对如何选择合适的晶振和如何保护晶振的相关内容和情况加以介绍以帮助大家增进对晶振的了解程度,和小编一起来阅读以下内容吧。 一、什么是晶振 晶振,全名叫“晶体振荡器”,它在电路当中起到产生振荡频率的作用。晶振主要是由晶体和外围元器件构成的。晶振一般指晶体振荡器。晶体振荡器是指从一块石英晶体上按一定方位角切下薄片(简称为晶片),石英晶体谐振器,简称为石英晶体或晶体、晶振。而在封装内部添加IC组成振荡电路的晶体元件称为晶体振荡器。其产品一般用金属外壳封装,也有用玻璃壳、陶瓷或塑料封装的。 二、如何选择晶振 选择一款合适的晶振,通常从6个方面进行考虑,分别为:频率稳定性、输出、相位噪声和抖动、电源和负载的影响、封装形式以及工作环境。下面,小编对此一一介绍。 1. 频率稳定性考虑 频率稳定性是衡量振荡器的输出频率在工作过程中由于温度变化而可能发生的变化。如果频率漂移超出了应用程序的预期,定时误差可能会出现。频率稳定性以百万分之一或ppm表示,相对于特定温度范围内的标称频率。 晶体振荡器的主要特性之一是工作温度内的稳定性,稳定性越高,晶体振荡器的性能自然越好,同时稳定性决定振荡器价格的重要因素。此外,晶体价格还受温度范围影响。 2. 输出 必需考虑的其它参数是输出类型,晶振的输出波形主要有三大类:正弦波、方波和准正弦波。在实际使用中,需要考虑晶振是与什么器件搭配使用,搭配的器件能够处理何种输出。如果搭配的器件无法处理晶振的输出,那么这样的搭配是不起作用的。 3. 相位噪声和抖动 相位噪声是指系统(如各种射频器件)在各种噪声的作用下引起的系统输出信号相位的随机变化。它是衡量频率标准源(高稳晶振、原子频标等)频稳质量的重要指标。在频域测量获得的相位噪声是短期稳定度的真实量度。 4. 电源和负载的影响 振荡器的频率稳定性通常受到两方面的影响,分别为振荡器电源电压变动和振荡器负载变动。如果选择的晶体振荡器合适,可以在一定程度上削减这两种影响。 5. 封装 目前,各种电子元件的封装形式都在变得越来越小,晶体振荡器也不例外。但是,小型封装也会带来一些不好的地方,例如会对晶体振荡器的性能、频率等造成一定的影响。所以,大家在选择晶体振荡器时,切不可盲目追求更小的封装形式。 6. 工作环境 工作环境对于任何一款元器件都是非常重要的,如果工作环境超出了器件的可应对范畴,那么对元器件肯定是具备严重伤害的。因此,我们选择晶体振荡器时,需要考虑到它的工作环境。 三、如何保护晶振 1、晶振的保存方式,首先要考虑其周围的潮湿度,潮湿度过大或者过小,都不利于晶振的存储。此外,还需要做好防挤压措施,压力过大将对晶振造成损坏。而且,晶振放在干燥通风的地方,这也是为了保证晶振存储时的潮湿度因素。 2、其次对于易碎的晶振器件要做好防震措施,强烈的震动将对晶振造成损坏。日常生活中,高空跌落是晶振损坏的重要原因之一,所以不宜将晶振放在较高的地方。 3、对于需要剪脚的晶振,在剪脚之前,我们应当调节好机械应力,避免过大的应力对晶振造成破坏。 4、在晶振焊锡过程中,需要选择合适的焊锡温度和合理的焊锡时间,时间不宜过长。如果焊锡时间特别长,可能对晶体的稳定性造成不可挽回的影响。 以上便是小编此次带来的全部内容,十分感谢大家的耐心阅读,想要了解更多相关内容,或者更多精彩内容,请一定关注我们网站哦。

    时间:2021-01-20 关键词: 稳定性 晶振 晶体振荡器

  • 你足够了解集成电路吗?大佬带你看4种集成电路封装形式

    你足够了解集成电路吗?大佬带你看4种集成电路封装形式

    一直以来,集成电路都是大家的关注焦点之一。因此针对大家的兴趣点所在,小编将为大家带来集成电路封装形式的相关介绍,详细内容请看下文。 集成电路或称微电路(microcircuit)、 微芯片(microchip)、芯片(chip)在电子学中是一种把电路(主要包括半导体装置,也包括被动元件等)小型化的方式,并通常制造在半导体晶圆表面上。集成电路具有体积小,重量轻,引出线和焊接点少,寿命长,可靠性高,性能好等优点,同时成本低,便于大规模生产。在现代的诸多行业中,集成电路几乎成了不可缺少的存在。 目前,集成电路产业不再依赖CPU、存储器等单一器件发展,移动互联、三网融合、多屏互动、智能终端带来了多重市场空间,商业模式不断创新为市场注入新活力。目前我国集成电路产业已具备一定基础,多年来我国集成电路产业所聚集的技术创新活力、市场拓展能力、资源整合动力以及广阔的市场潜力,为产业在未来5年~10年实现快速发展、迈上新的台阶奠定了基础。为增进大家对集成电路的了解程度,下面小编将对集成电路的4种主要的封装形式予以介绍。 1、SOP小外形封装 SOP始于70年代末期,有另外两种叫法,分别是DFP和SOL。在实际生产中,SOP是常被采用的元器件封装形式。并且,SOP还是表面贴装型封装之一,从封装形状来看,主要呈L字形。从封装材料划分,SOP主要可以分为两类,塑料型SOP和陶瓷型SOP分塑料和陶瓷两种。 SOP封装除了用于存储器LSI外,还可以用于其它范畴。例如,输入输出端子不超过10-40等领域。随着时代的进步和需求,SOP逐渐演变出其它形式,如SSOP、SOIC等封装形式。 2、BGA球栅阵列封装 聊完SOP小外形封装,我们再来看看BGA球栅阵列封装。 PGA插针网格阵列经由改良,即可得到BGA封装形式。BGA封装形式的做法是以格状形式在某个表面上布满引脚,由此,电子讯号在运作时就可以完成从集成电路到印刷电路板的传递。采用BGA封装后,封装底部处引脚则可以采用其它形式代替,通常是手动或透过自动化机器配置且可通过助焊剂进行定位的锡球。 同其他封装形式相比,如四侧引脚扁平封装、双列直插封装等,BGA封装具备两个很大的优势,一是可容纳更多的接脚,二是具有更短的平均导线长度,两点优势使得BGA封装可以拥有更高速的性能。 3、PGA插针网格阵列封装 聊完BGA球栅阵列封装,我们再来看看PGA插针网格阵列封装。 PGA插针网格阵列封装主要应用与微处理器领域,在该领域内,该封装形式才能发挥出最大的效能。PGA插针网格阵列封装主要是将集成电路以底部是排列成方形的插针的形式封装在瓷片内,通过插针,则可方便地将集成电路焊接到电路板的插座上。由此可见,PGA插针网格阵列封装适用于插拔频繁的场合。同双列直插封装相比,PGA插针网格阵列封装的优势在于可以采用更小的面积完成相同的工作。 4、DIP双列直插式封装 聊完PGA插针网格阵列封装,我们再来看看DIP双列直插式封装。 所谓DIP双列直插式封装,是指采用双列直插形式封装的集成电路芯片,绝大多数中小规模集成电路IC均采用这种封装形式,其引脚数一般不超过100个。采用DIP封装的CPU芯片有两排引脚,需要插入到具有DIP结构的芯片插座上。DIP封装的芯片在从芯片插座上插拔时应特别小心,以免损坏引脚。 经由小编的介绍,不知道你对集成电路是否充满了兴趣?通过本文,小编相信大家对于集成电路的4种封装形式已经具备了清晰的了解。如果你想对集成电路相关知识有更多的了解,不妨尝试度娘更多信息或者在我们的网站里进行搜索哦。

    时间:2021-01-20 关键词: 集成电路 芯片 封装

  • 什么是地磁传感器?地磁传感器有什么应用?

    什么是地磁传感器?地磁传感器有什么应用?

    今天,小编将在这篇文章中为大家带来的地磁传感器有关报道,通过阅读这篇文章,大家可以对地磁传感器、地磁传感器与陀螺仪的区别以及地磁传感器的应用产品有所认识,主要内容如下。 一、什么是地磁传感器? 地磁场是地球的固有资源,为航空、航天、航海提供了天然的坐标系,可应用于航天器或舰船的定位定向及姿态控制。利用地球磁场空间分布的磁导航技术简便高效、性能可靠、抗干扰,是发达国家不可缺少的基本导航定位手段之一,如自动化程度很高的波音飞机都装载有磁导航定位系统。 二、什么是陀螺仪 为了介绍地磁传感器与陀螺仪的区别,此处先对陀螺仪加以简单介绍。 陀螺仪的原理就是,一个旋转物体的旋转轴所指的方向在不受外力影响时,是不会改变的。人们根据这个道理,用它来保持方向。然后用多种方法读取轴所指示的方向,并自动将数据信号传给控制系统。我们骑自行车其实也是利用了这个原理。轮子转得越快越不容易倒,因为车轴有一股保持水平的力量。现代陀螺仪可以精确地确定运动物体的方位的仪器,它在现代航空,航海,航天和国防工业中广泛使用的一种惯性导航仪器。传统的惯性陀螺仪主要部分有机械式的陀螺仪,而机械式的陀螺仪对工艺结构的要求很高。陀螺仪的基本部件有: (1)陀螺转子(常采用同步电机、磁滞电机、三相交流电机等拖动方法来使陀螺转子绕自转轴高速旋转,并见其转速近似为常值);(2)内、外框架(或称内、外环,它是使陀螺自转轴获得所需角转动自由度的结构);(3)附件(是指力矩马达、信号传感器等)。 三、地磁传感器与陀螺仪区别 地磁传感器与陀螺仪都可以用在导航上,各有优点。 陀螺仪是利用陀螺的定轴性和进动性,可以测量姿态(利用定轴性)和寻北(利用进动性)的仪器;短时间精度高,长时间工作时存在累积误差。地磁场传感器是可以测量地球磁场,在不受磁干扰的情况下,如果知道当地的经纬度和海拔,就可以在测量地磁场方向后,利用各种地球磁场模型计算磁倾角、磁偏角,然后就可以算出极北和姿态等。磁场传感器容易受干扰,但是简单不容易坏。 四、地磁传感器的应用 通过上面的介绍,大家对地磁传感器肯定已经具备了一定了解,那么,地磁传感器有哪些应用呢? (一)地磁传感器应用方面 以往磁传感器在手机中的应用,主要是用在指南针和一些游戏中,最多是用到GPS的惯性导航。所以在客户和一些手机厂家看来,地磁传感器都是一个可有可无的“奢侈品”,一直是高端手机才有的东西。 可是,一项新的应用将大大推动地磁传感器成为手机的必配产品。这就是室内导航。目前已有谷歌、高德等传统的地图厂商建立数据库,以推动室内导航这一基于LBS(LocaTIon Based Services)的位置服务。 (二)一款具体的地磁传感器系统——地磁车辆检测器TVD-200 TVD-200为地埋式无线地磁车辆检测系统,用于替代传统线圈型车辆检测器,车辆经过检测器埋设区域时,通过检测设备周围磁场相对地球磁场的变化以判断车辆的经过和通过,接收器收到检测器信号后,把信号传输给相应的系统,完成车辆检测。无线地磁车辆检测器可以免布线安装,无需外部电源,施工简单,具有很强的适应性,可以满足各种复杂气象条件下停车位信息的采集和处理。 以上就是小编这次想要和大家分享的有关地磁传感器的内容,希望大家对本次分享的内容已经具有一定的了解。如果您想要看不同类别的文章,可以在网页顶部选择相应的频道哦。

    时间:2021-01-20 关键词: 传感器 陀螺仪 地磁传感器

首页  上一页  1 2 3 4 5 6 7 8 9 10 下一页 尾页
发布文章